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I. INRTODCUCTION 

The postdoctoral fellowship grant was awarded to the principal investigator (PI) for the period of April 
1, 2003—March 31, 2005. The purpose of this investigation is to introduce a framework for including 
model parameter uncertainties into prostate Intensity Modulation Radiation Therapy (IMRT) dose 
optimization so that biological model-based objective function can be used with improved confidence level. 
The specific aims of the proposal are: (1) to establish a mathematical formalism to incorporate model 
parameter uncertainty into IMRT optimization; (2) to identify the clinically relevant biological model 
parameter variance range; and (3) to study the prostate cancer treatment planning including the model 
uncertainty information. Under the generous support from the U.S. Army Medical Research and Materiel 
Command (AMRMC), the PI has contributed significantly to the radiation treatment of prostate cancer. 
Several conference abstracts and refereed papers have been resulted from the support. The project is 
integrated with ongoing radiation treatment so that the PI has obtained clinical experience while 
accomplishing the proposed projects. The preliminary data and cHnical training obtained under the support 
of this grant has enabled the PI to start as an assistant professor in the Department of Radiation Oncology at 
a prestigious university. 

II. RESEARCH AND ACCOMPLISHMENTS 

Adenocarcinoma of the prostate has become the most common malignancy in men in the western 
countries. Options for active management of organ-confined prostate cancer include radical prostatectomy 
and definitive radiotherapy with either external beams or interstitial brachytherapy. Intensity Modulated 
Radiation Therapy (IMRT) is quickly replacing conventional techniques for the treatment of prostate 
cancer. Most IMRT optimization systems at present use dose and/or dose volume-based objective 
functions , which guide the IMRT planning by imposing a penalty according to the difference between the 
computed and prescribed doses. A well-known drawback of the dose-based inverse planning is that the 
nonlinear dose response of tumor or normal structures is not fully considered. A number of mathematical 
models have been developed over the years to better describe the biological effect of radiation and 
considerable works have also been done to use these biological models to construct more meaningful 
objective functions for therapeutic dose optimization ^. Generally speaking, radiobiological formalism 
involves the use of model parameters that are of considerable uncertainty ^"^. For instance, the 
radiosensitivity a of Webb's TCP model varies from 0.157 Gy"^ to 0.090 GyVwhen model parameters were 
fit to 103 patients' data ^. Biological 'margins' have been used to account for the variability in radiation 
sensitivity. Similar to the use of a safety margin to account for the potential uncertainties in targeting a 
tumor, this method assigns more conservative radiosensitivity values to the tumor or sensitive structures to 
deal with the potential uncertainty of the parameter^. 

The purpose of this project is to develop a framework to include any types of model parameter 
uncertainties to the dose optimization. In our approach, the uncertainty of a model parameter is quantified 
by a probability density function and its influence is then incorporated into inverse planning through the use 
of a statistical inference theorem ^. Our model is formulated on the equivalent uniform dose (EUD) ^' ^ : 

\^ 

(1) 
for both tumor and normal tissues, where N is the number of voxels in the structure, Di is the dose 
delivered to the ith voxel, a is the tumor or normal tissue-specific parameter that describes the dose-volume 
effect. The corresponding objective function to measure the goodness of a dose distribution is given by ^ 

'      , (2) 
where the component subcore jj may be either 
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for tumors, or 
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EUD„ (4) 
for normal tissues and organs at risk (OARs). EUDo is the desired dose parameter for the target volume and 
the maximum tolerable imiform dose for normal structures. Parameter « is akin to the structure specific 
importance factor '° in the conventional inverse planning formalism that parameterizes our tradeoff 
strategy of different structure. 

We assume that Ok in the EUD model varies according to a simple Gaussian distribution 
P„(aO = P>xp{-r,[a*-a„f}, (5) 

where ao is the mean value, P\_ is a normalization constant and Ok is one of the sampling values of a. For a 
given distribution, the EUD and the corresponding figure of merit of an IMRT plan vary with the sampling 
of a. We thus rewrite Eqs. (3) and (4) as conditional probabilities for a sampled Ok. 
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The objective function for a structure m in the presence of uncertainty in a is expressed as the 
summation of a series of joint probabilities 

pjEUD) = Y^PSEUD I a^ypsak) 
(8) 

and the overall objective function P of the system is a product of PJJEUD) defined in Eq. (8). That is 
F = \n{\l P) = -\nl[P„{EUD) = -Y^Y.P.niEUD\akyPSa<^) 
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Figure 1 (Left) The target and OAR DVHs of four optimal plans when parameter a is a fixed value (bar chart dl) and varies 
according to three different probabilistic distributions (bar chart d2, d3 and d4). 
Figure 2 (Right) The EUD of the target and objective ftinction when parameter a is prescribed according to Fig. 1. 



We first investigated the behavior of the system using a C-shaped tumor case when the parameter a of 
the target EUD takes four different distributions, as depicted in 
the bar charts shown on the right of Fig. 1, while keeping the 
parameter a of the OAR at a constant ao= 6.0. In the case shown 
in Fig. 1 dl, the parameter a takes only a single value, ag = -10, 
which is a simple case studied by Wu et al ^. The optimal plans 
for the four distributions of parameter a differ significantly, as 
indicated by the target and OAR DVHs shown in Fig. 1 A and 
B. To estimate the degree of sensitivity of the solutions against a 
variation in a, we computed the target EUD and the objective 
function, fr, as a function of parameter a for the four optimal 
dose distributions under different types of uncertainty 
distributions. The resuhs are plotted in Fig. 2. The resuhs 
suggest that the EUD becomes much less sensitive to the 
variation in parameter a in the plans obtained with some "built- 
in" distributions in parameter a (i.e., plans corresponding to 
Figs. 1 d2 to d4). 

Four IMRT plans with different types of pre-assumed 
uncertainties were generated for a prostate tumor case (Fig. 3A). 
These include: (i) The a-parameters for both prostate target and 
OARs        are 
restricted     to 
single   values 
as    listed    in 

Figure 3. A transverse slice showing the 
anatomical structures delineated for the prostate 
tumor (A) and the corresponding optimized 
dose distribution with the parameters listed in 
Tab. 1 and the probabilistic distribution shown 
in Fig. 4B. 

A 
lotget 

■V 

Table 1. This plan serves as a reference whose DVHs 
are shown in Figs. 4A-C as dotted curves; (ii) Only the 
a-parameter of the prostate target takes a range of 
values, as depicted in the right of Fig. 4A; (iii) Only the 
a-parameter of the rectum takes a range of values, as 
depicted in the right of Fig. 4B; and (iv) The a- 
parameters of both prostate target and the rectum were 
allowed to take a range of values, as depicted in the 
right of Fig. 4C. 

DVHs for the plan using parameters defined in 
Table 1 are plotted with dotted curves and plans with 
the inclusion of parameter uncertainty are drawn with 
solid curves (Fig. 4). When the parameter a in target 
EUD takes a Foisson distribution as shown in the bar 
chart of Fig. 4A, prostate dose homogeneity is 
significantly improved. The minimum dose increases 
from 55 Gy to 67 Gy, and the maxim dose decreases 
slightly from 82 Gy to 80Gy. However the volumes 
receiving radiation dose for rectum, bladder and 
normal tissue all increase significantly though the 
maximum dose remains similar. The improvement of 
the target coverage and compromise of OAR sparing 
is a natural outcome of the competitive requirements 
for targets and OARs imposed on the system. The 
corresponding   dose   distribution   with   the   target 
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Figure 4. DVHs for a prostate cancer case using the 
conventional optimization with fixed a-value (dotted line) and 
the newly proposed approach with the inclusion of model 
parameter uncertainty (solid line). (A) Only the a-parameter for 
the target is assigned with a probabilistic distribution; (B) Only 
the a-parameter for the OAR is assigned with a probabilistic 
distribution; (C) Uncertainties in the a-parameter are 
introduced for both the target and OAR. 



corresponding dose distribution with the target parameter defined in the bar chart A is shown in Fig. 3B. 
Next we considered the inclusion of parameter a uncertainty in EUD calculation in one of the critical 
structures-rectum (Fig. 4 B). The irradiated rectum volume for a dose below 60 Gy is less than that of a 
conventional plan with the parameter a fixed at 24. DVHs for the bladder, normal tissue and prostate do not 
change significantly compared to the plan without inclusion of parameter uncertainty. Lastly, we 
simultaneously replaced target and rectum parameters with the distributions shown in Fig. 4 C. Similar to 
that corresponds the prescription of Fig. 4 A, the prostate coverage is improved. However, the rectum DVH 
in this case is not worsen greatly because parameter a of rectum EUD was allowed to take a spectrum of 
values. For bladder and normal tissue, although their irradiated volumes in the low dose region are higher 
than those of the conventional plan, the volumes receiving high doses are reduced. 

Table 1. The conventional EUD-based optimization parameter for prostate cancer. 

PTV PTV* Bladder Rectum NT 
a -10.0 10.0 6.0 24 6.0 
EUDo(Gy) 72 76 35 35 35 
n 20 20 6 6 6 

* Contains parameters for the target 

III. KEY RESEARCH ACCOMPLISHMENTS 

• Developed a series of mathematical formulae to incorporate model parameter uncertainty into IMRT 
optimization. 
• Verified the new method in the prostate cancer Case and better dose coverage/sparing can be obtained 
with appropriate parameters. 
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V. CONCLUSIONS 

A technique for incorporating biological model parameter uncertainties into inverse treatment planning 
has been developed. The formalism is quite general and does not prerequisite the specific form of 
uncertainty distributions of the involved model parameters. By including model parameter uncertainties, the 
final solution becomes more robust and the treatment outcome will be less likely influenced by inter-patient 
variation of biological characteristics. With the increasing interest in radiation therapy community to use 
biologically based models for treatment planning, this work provides an effective way to better account for 
the known uncertainties in the model parameters and allows us to maximally utilize the available 
radiobiology knowledge to facilitate patient care. 
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Therapeutic treatment plan optimization with probability density-based 
dose prescription 

Jun Lian, Cristian Cotrutz, and Lei Xing^' 
Department of Radiation Oncology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford 
California 94305-5304 

(Received 18 September 2002; accepted for publication 29 January 2003; published 26 March 2003) 

The dose optimization in inverse planning is realized under the guidance of an objective function. 
The prescription doses in a conventional approach are usually rigid values, defining in most in- 
stances an ill-conditioned optimization problem. In this work, we propose a more general dose 
optimization scheme based on a statistical formalism [Xing et al, Med. Phys. 21, 2348-2358 
(1999)]. Instead of a rigid dose, the prescription to a structure is specified by a preference function, 
which describes the user's preference over other doses in case the most desired dose is not attain- 
able. The variation range of the prescription dose and the shape of the preference function are 
predesigned by the user based on prior clinical experience. Consequently, during the iterative 
optimization process, the prescription dose is allowed to deviate, with a certain preference level, 
from the most desired dose. By not restricting the prescription dose to a fixed value, the optimiza- 
tion problem becomes less ill-defined. The conventional inverse planning algorithm represents a 
special case of the new formalism. An iterative dose optimization algorithm is used to optimize the 
system. The performance of the proposed technique is systematically studied using a hypothetical 
C-shaped tumor with an abutting circular critical structure and a prostate case. It is shown that the 
final dose distribution can be manipulated flexibly by tuning the shape of the preference function 
and that using a preference function can lead to optimized dose distributions in accordance with the 
planner's specification. The proposed framework offers an effective mechanism to formaUze the 
planner's priorities over different possible clinical scenarios and incorporate them into dose opti- 
mization. The enhanced control over the final plan may greatly facihtate the IMRT treatment 
planning process. © 2003 American Association of Physicists in Medicine. 
[DOI: 10.1118/1.1561622] 

Key words: IMRT, dose optimization, inverse planning, statistical analysis 

I. INTRODUCTION 

Inverse planning is used in intensity modulated radiation 
therapy (IMRT) for deriving the optimal beam intensity pro- 
files that produce the best possible dose distribution for a 
given patient.'"'* The dose optimization process is usually 
performed under the guidance of an objective function, 
which measures the "distance" between the physical and the 
prescribed dose distributions.^''^"^" One of the common ob- 
jective functions for inverse planning is the quadratic objec- 
tive function,^'^''^^ with importance factors assigned to the 
involved structures to prioritize their relative importance dur- 
ing the optimization process.^^"^^ The objective function is 
defined as a global quantity based on general physical con- 
siderations. When the desired dose distribution is not attain- 
able during optimization, a compromise solution is found 
using the algorithm's ranking. The compromise dose distri- 
bution, however, is often not what the planner wants and 
multiple trial and errors are needed to obtain a clinically 
acceptable IMRT plan. 

A main problem of the existing IMRT planning algo- 
rithms is the lack of an effective mechanism for incorporat- 
ing prior knowledge into inverse planning.^' In the past, 
there have been many attempts to introduce soft/hard con- 
straints to steer the dose optimization process toward the 

clinically desired solutions.^*"^"-^* However, the constraints 
are introduced in an ad hoc fashion and do not fully utilize 
the partial information available from years of clinical inves- 
tigations because of their phenomenological nature. On a 
more fundamental level, the constraints are imposed a pos- 
teriori and controls the optimization passively. Our purpose 
in this paper is to develop a statistical analysis-based inverse 
planning formaUsm to more effectively utilize die prior 
knowledge. Instead of specifying a rigid prescription dose, 
the formalism allows us to use a dose distribution as the 
input prescription to the system, providing a natural way for 
us to take advantage of the existing mformation of the sys- 
tem variables and promising to make the optimization out- 
come more predictable and controllable. 

In the next section we present the details of the new dose 
optimization algorithm after a brief introduction of the con- 
cept of preference function. The formalism is then applied to 
a synthetic phantom case with C-shaped tumor target and a 
prostate case. Our results indicate that the statistical analysis- 
based formalism provides a general framework for inverse 
planning and is capable of producing conformal IMRT dose 
distribution. Coupled with the capability of the preference 
function in customizing/formalizing our prior clinical knowl- 
edge, it is expected that the proposed technique will have a 

655      Med. Phys. 30 (4), April 2003 0094-2405/2003/30(4)/655/12/$20.00 © 2003 Am. Assoc. Phys. Med.      655 



656 Lian, Cotrutz, and Xing: Therapeutic treatment plan optimization 656 

broad implication and potential to greatly facilitate an IMRT 
planning process. 

II. MATERIAL AND METHODS 

A. Theoretical background 

In a vectorial form, the dose to the points in the treatment 
region depend upon the beamlet weights w as 

D,=dw, (1) 

where d represents the dose deposition matrix, expressing 
the dose deposited to any point in the patient when irradiated 
with a unit weight beamlet vector. The inverse problem as 
posed for IMRT is to find a set of beamlet weights that pro- 
duce the optimal dose distribution by minimizing a therapeu- 
tic objective function. The most used objective function has a 
quadratic form and reads 

1   " 

32 as 

^=77S r„[D,{n)-Dp{n)]\ 
'' n=l 

(2) 

where A^ is the total number of voxels, r^. is the importance 
factor that controls the relative importance of a structure a, 
and Dp and D^ are prescribed and calculated doses, respec- 
tively. 

In inverse planmng algorithm based on the quadratic ob- 
jective function [Eq. (2)], the dose prescription to the target 
or sensitive structure takes a rigid value. The minimization of 
the objective function is realized by various algorithms like 
simulated annealing, gradient methods, etc.^'''^^'^^'^^ Indepen- 
dent of the used dose optimization algorithms, we will call 
these methods throughout the text conventional IMRT opti- 
mization procedures. The problem is usually ill-posed and 
may lead to negative fluence unless hard constraints are 
introduced.^ Practically, it is not uncommon that the plans 
computed by what are called optimization systems are not 
consistent with the expectation of the planner and that sev- 
eral trial-and-error adjustments of the system parameters 
might be required to achieve a clinically acceptable plan. 
Given a patient, the obtained plan can vary widely from one 
planer to the next, even within a department. In the following 
we describe a more adaptable and "intelligent" statistical 
inverse planning formalism based on the concept of a pref- 
erence function to better deal with the dilemma. 

B. Preference function 

In a recent paper, Xing et al.^^ introduced the concept of 
preference function to weaken the rigid dose prescription 
commonly seen in the existing inverse planning algorithms. 
Its role is to allow a dose distribution to be considered in- 
stead of just a single value, and to quantify the degree of our 
willingness to accept a prescription dose Dp in that range. 
The preference function can be constructed heuristically 
from clinical considerations.^^ The defined preference func- 
tion states that the most favorable prescription dose for a 
voxel n is Dp(n) and that a different prescription dose is also 
acceptable, but with a smaller preference level. For illustra- 
tion, in Fig. 1 we show a sketch of the preference functions 

§ •a o a 
i2 

Preference 
function 
for a target 

Q Tolerance 

FIG. 1. A sketch of preference functions for a target and a sensitive strticture. 

for a target and sensitive structure. The most desirable dose 
for a sensitive structure should generally be set to zero. The 
conventional prescription scheme represents a special case of 
the general approach proposed here with the step function 
form of the preference function. That is. 

PniDp)^ 
if Dp = Dl, 

if Dpi=Dl. (3) 

To give another example, we write down the Gaussian 
preference function for a voxel n 

PniDp) = Pon exp{ - r„[£>p(«) -Z)°(n)]2}, (4) 

where Po„ is a normalization constant and y„ represents the 
Gaussian parameter. For a system comprising N voxels, the 
total preference is given by a product of the preference func- 
tions of all voxels: 

^ = n  Pn(D„) 

= n Pon^M-7nlDp(n)-Dl{n)f}. (5) 

When a maximum likelihood estimator is used, it has 
been demonstrated that the maximization of the logarithmic 
function of P or minimization of hi(l/P), is equivalent to the 
minimization of the conventional quadratic objective 
function.^''^'* In this case, the Gaussian parameter y„ in Eq. 
(5), which commands the "spread" of the Gaussian around 
Dp, is equivalent to the importance factor that controls the 
relative importance of the structure and parametrizes the 
clinical trade-off strategy. 

C. Probability density-based dose prescription and 
inverse planning 

The objective function defined in Eq. (2) uses a rigid 
dose. Dp. Since in most instances an ideal dose prescription 
is not physically attainable, we resort to an expansion of the 
prescription dose, over a certain interval. That is, we allow 
the prescription dose to take a "probabilistic" distribution 
around the most desired dose as specified by the preference 
function. For computational purpose, we divide the permis- 

lUledical Physics, Voi. 30, No. 4, Aprii 2003 
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sible prescription dose into a number of discretized values, 
{Dp}, where / is the index of a possible prescription dose and 
/ = 0 represents the most desirable dose. The preference dis- 
tribution prescription is usually normalized to unity. 

In order to utilize the probability information character- 
ized by the preference function, we formulate the conven- 
tional dose optimization into a statistical analysis problem. 
To proceed, let us take the quadratic objective function as an 
example. We rewrite the traditional quadratic objective func- 
tion (2) into 

f(Dc)=foU exp{-r^[Z>,(n)-n («)]2}. (6) 

where /Q is a normalization constant. For a given prescribed 
dose distribution, Eq. (6) measures the goodness of a calcu- 
lated dose distribution using an exponential scale, as com- 
pared with Eq. (2). Equation (6) can be interpreted as a con- 
ditional probability and formally rewritten as 

fiD,\Dp) =foU  exp{-r^[D,{n) -Dp{n)f}. (7) 

Sample beam profiles and 
compute dose (D^) 

3E 
For every set of permissible 

prescription (Dp) 

Compute preference function 
for the given (D-) , 

3L 
Compute plan ranking function 

for the given (D,,} 

IT 

Compute joint "probability" 

Yes. Output plan 

Sample new beam profiles 
and re-compute dose {D^) 

Fro. 2. A flow chart of the optimization process with the inclusion of pre- 
designed preference function information. 

When the prescription dose is no longer a rigid dose, it is 
conceivable that there are a number of optimum solutions, 
each corresponding to a sample of prescription doses. Math- 
ematically, we now have two "probability" distribution func- 
tions. One is the preference function that characterizes our a 
priori preference over different prescription doses P(,Dp), 
and the other is Eq. (6) that ranks a calculated dose for a 
given prescribed dose. Dp. Our task is to find the solution 
that is statistically optimal with consideration of the variable 
prescription. For this purpose, we introduce the "joint prob- 
ability" of the two "probability" distributions defined by 
Eqs. (5) and (7). The function at a voxel n can be written as 

fnPc) = E MDM)Pn(Di). (8) 

The total preference function of the system is given by 

^ = 11 PniD,). (9) 
n 

D. Optimization strategy 

Having the rigid prescription Dp in (2) replaced by a 
range of prescribed doses, {Dp}, the total preference func- 
tion is now given by Eqs. (8) and (9). For convenience, we 
define objective function F=hi(l/P) and derive die optimal 
solution by minimizing the F, which is equivalent to maxi- 
mize the preference function (9). The objective function now 
reads as 

F=ln(l/P) 

^-hlUPn- •2  ^I.fniDM)-P„iD<).    (10) 

Note that the conventional quadratic objective function is a 
special case of the above general objective function when the 
prescription takes a rigid value for each structure, as de- 
scribed by Eq. (3). 

The optimization process is schematically shown in a flow 
chart (Fig. 2). The beam profile is determined by minimizing 
the above objective function using a conjugate gradient op- 
timization algorithm. The details of die algorithm have been 
discussed in a previous paper.^^ Briefly, the calculation con- 
sists of diree major steps: (i) assume an initial intensity pro- 
file for each incident beam; (ii) compute the "joint probabil- 
ity" given by Eqs. (8) and (9). For this purpose, we need to 
sample all combinations of the prescription doses of different 
strucmres and compute the function given in Eqs. (5) and (7) 
for each of these combinations; and (iii) optimization of the 
multidimensional "joint probability" fiinction. The second 
step is fairly computationally intensive because we must 
compute the two functions for every sampling of the pre- 
scription doses. In our calculation, we typically assign four 
to seven discrete possible prescription doses for each struc- 
ture. A finer discretization of the prescription dose did not 
seem lead to further improvement but would greatly increase 
the computation time. All calculations presented here are 
performed on a Personal Computer (PC) with an Intel Pen- 
tium® m 1 GHz CPU (Intel Corporation, Sunnyvale, CA). 
The computation time needed to obtain an optimal solution 
for a given set of system parameters (including beam con- 
figuration, preference function, importance factors) is typi- 
cally less than ten minutes. 

III. RESULTS AND DISCUSSION 

A. A synthetic pliantom case with a C-shaped tumor 

To systematically study the performance of the statistical 
analysis-based inverse planning algorithm, we applied the 
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B 

FIG. 3. (a) A sketch of a phantom case with a C-shaped 
tumor. The dose prescription is set 100 (arbitrary units) to 
the PTV and 0 to the circular OAR and normal tissue, (b) 
Dose distribution obtained using the "probabilistic" pre- 
scription shown in Fig. 4(a). 

10 20 30 

technique to a C-shaped tumor case [Fig. 3(a)] with a variety 
of preference functions and compared the results with that 
obtained using the conventional approach with a fixed dose 
prescription. Nine equally spaced 6 MV beams beginning at 
0° (lEC) were used in this study. The prescription doses to 
the PTV and OAR in the conventional IMRT plans were 100 
and 0 (the dose is in an arbitrary unit), respectively. 

We first assigned three sets of symmetrical Gaussian dis- 
tributions to the target while keeping the prescription to the 
sensitive structure at zero (Fig. 4). The Gaussian preference 
functions were represented by three sets of preference levels 
at seven discrete values (80, 87, 94, 100, 106, 113, and 120). 
The center of the Gaussian functions was set at 100. The 
preference levels for the seven doses are shown in Fig. 4 for 
each of the three situations studied here. The transverse dose 
distribution obtained using the statistical inverse planning 
formalism for the case shown in Fig. 4(a) is plotted in Fig. 
3(b). As expected, target inhomogeneity increases as we 
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loosen the constraint of the rigid dose prescription. This can 
be better demonstrated by using the differential DVH for 
each situation. As seen from the differential DVH plots (the 
right column of Fig. 4), the width of the differential function 
gradually increases, from 26.72, 28.59-30.39, as we gradu- 
ally increase the acceptance levels for the doses different 
from the most desirable dose (100). This series of calcula- 
tions provides us with preliminary evidence that the final 
dose distribution can be steered by varying the preference 
function. 

Next, we constructed six sets of asymmetric preference 
functions for the target (Fig. 5 and Fig. 6). When higher 
preference levels were assigned to the doses higher than 100, 
we found that the target DVH is shifted to the high dose 
region. Interestingly, even when an extremely low preference 
(for instance, 1%) was assigned to the doses less than 100 
[Fig. 5(b)], a noticeable underdosing relative to the conven- 
tional result was resulted. A similar phenomenon can also be 
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Fro. 4. DVHs of the PTV, OAR, and normal tissue (NT) obtained using the conventional rigid dose prescription (dotted line) and the "probabilistic" 
prescription (solid line). The Gaussian preference functions with different variances are shown in the middle panel. The right panel shows the differential 
DVHs for the target. 
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seen from the result shown in Fig. 5(c), where only 0.5%, 
0.7%, and 1% of preference levels were assigned to the dose 
values of 80, 87, and 94. This observation seems to indicate 
that the influence of the assigned preference level at a low 

dose plays an important role. In Fig. 6, we set the preference 
levels for the doses less than 100 to be 0 and only assign 
nonzero preference levels for die doses higher than 100. It is 
seen that in all these situations the minimum target dose is 
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FIG. 7. DVHs of the OAR and PTV when the prescription dose to the OAR is modeled by (a) a uniform distribution, (b) a bell-shaped function, (c) an 
exponential decay function, and (d) a rigid value. 

higher than that of the conventional plan. As a result of our 
preference over higher doses, the fractional volume at any 
dose less than 100 is improved in comparison to that of the 
conventional IMRT plan. In Fig. 6(c), we further exemplify 
the statistical analysis based inverse planning method by 
simplifying our preference to two doses (100 and 120), each 
with 50% preference levels. In this situation, in addition to 
that the doses in the target are shifted toward higher values, 
the target DVH exhibits a stepwise behavior: a plateau ap- 
pears at around 110, which is in the middle of the two pre- 
scribed doses. 

It is interesting to point out that the OAR sparing is im- 
proved as compared with the conventional IMRT plan in 
most cases studied in Figs. 5 and 6, even when the target 
dose is escalated. That is, the DVH of the OAR is not always 
shifted toward higher doses, as would occur if a higher dose 
is prescribed in a conventional inverse planning system. In- 
stead, the dose to the OAR remained unchanged or even 
lowered in some cases. A reasonable explanation for the ob- 
served phenonienon is that, when a rigid dose prescription is 
replaced by a range of doses, the system is given more free- 
dom for self-adjustment. As a benefit, a solution with a 
higher integral target dose and reduced OAR dose can be 
obtained from the expanded solution space. 

We have also studied the behavior of the system when a 
range of doses is prescribed to the OAR. In this investiga- 
tion, we kept the target prescription to 100 and allowed the 

OAR dose to take seven values: 0, 5, 10, 15, 20, 25, and 30 
with the acceptance levels sampled from three different types 
of prescription distribution: uniform [Fig. 7(a)], bell-shaped 
[Fig. 7(b)], and exponential [Fig. 7(c)] functions. Figure 7(d) 
represents the conventional case with zero prescription to the 
OAR. The corresponding OAR and PTV DVHs are plotted 
in the left panel of Fig. 7. When the preference was uni- 
formly sampled in the dose interval from 0 to 30, the result- 
ant dose to die OAR was found to be the highest, as indi- 
cated by curve A in Fig. 7. The best target dose coverage was 
achieved in this situation. If the preference to a high dose 
was reduced, the DVH was gradually shifted to the low dose 
direction (curves B and C). It is not surprising that the best 
OAR sparing was achieved in the conventional case where a 
zero dose was prescribed to the OAR. The target dose homo- 
geneity was sUghtly improved in all cases when a probabi- 
listic prescription was given to the OAR. Similar to that de- 
scribed in the last paragraph, the results clearly demonstrate 
that the "probabilistic" prescription allows us to control the 
OAR dose distribution and indicate the usefulness of the 
statistic analysis approach. 

B. The prostate case 

The new inverse planning algorithm was also applied to 
study a six filed IMRT prostate treatment [Fig. 8(a)]. Four 
plans with different types of preference functions were gen- 
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A 

B 

Ro. 8. A transverse slice showing tlie anatomical struc- 
tures delineated for the prostate tumor (a) and (b) the 
dose distribution obtained using the "probabilistic" 
prescription shown in Fig. 9(a). 

10 20 30 40 50 BO 

erated. In addition, a plan with rigid prescription (74 Gy on 
the target, 60 Gy on the bladder, and 40 Gy on the rectum) is 
also generated. The DVHs for this plan is plotted as dotted 
lines in Fig. 9 and is used as a reference for comparison. In 
all treatment plans, six beams were placed at the following 
angular positions: 0°, 55°, 135°, 180°, 225°, and 305°. The 
size of the pencil beam defined at the isocenter was 0.5 cm. 

The DVH and preference fiinctions for four different 
plans are schematically shown in Fig. 9. In the study shown 
in Figs. 9(a)-9(b), we kept the preference function of the 
sensitive structures unchanged and only varied the form of 
the preference function of the target. In Fig. 9(a), we as- 
sumed that target could take seven discrete values (74, 76, 
78, 80, 82, 84, and 86 Gy) sampled from an exponential 
distribution. Compared with the dotted lines, the target DVH 
was shifted toward the high dose direction. The dose distri- 
bution corresponding to the preference function is shown in 
Fig. 8(b). The target DVH was shifted even further toward 

the high dose region [Fig. 9(b)] when a bell-shaped prefer- 
ence function was used with more emphasis on the target 
receiving doses at 74, 76, and 78 Gy. In both cases, doses to 
the rectum and bladder did not change significantly. 

In Fig. 9(c) we show the DVHs when the preference func- 
tion to the rectum deviates from the uniform distribution. As 
a result, the rectum dose was significantly lowered in all dose 
levels and the maximum dose was reduced from 66 to 57 Gy. 
Because of the proximity of the rectum to the prostate target, 
the maximum rectum dose was not restricted to 30 Gy, as 
specified in the preference function. We emphasize that the 
improvement in rectum and bladder sparing was achieved at 
cost of higher dose inhomogeneity in the prostate target. This 
reminds us that, in dose optimization, there is a dosimetric 
compromise. That is, the improvement in the dose to a struc- 
ture is often accompanied by dosimetrically adverse effect(s) 
at other points in the same or different structures. The impor- 
tant point that one should note is that from the clinical point 
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of view, some dose distributions are more acceptable dian 
others and our goal is to find the solution that improves the 
plan to the largest possible extent, but with a clinically insig- 
nificant or acceptable sacrifice in OAR sparing. In order to 
achieve this, it is necessary to have a reasonable amount of 
controllability over the final dose distribution. In this sense 
we believe that the proposed formalism is valuable. 

In addition, we varied the preference functions for both 
target and rectum [Fig. 9(d)]. The preference function for the 
rectum was the same as that in Fig. 9(c). Compared to the 
results shown in Fig. 9(c), we found that the target dose 
inhomogeneity was sUghtly improved. 

IV. CONCLUSIONS 

The formalism we derived here provides a general starting 
point for the study of a system with a probability density- 
based dose prescription. The inclusion of the partial informa- 
tion into the plan selection process represents a significant 
change from the conventional approaches. The proposed 
technique can be categorized into the general Bayesian 
decision-making theory,^' which is a useful tool to deal with 
a system with "statistical" inference. In image analysis and 
many other fields of science and engineering, it has proven 
extremely useful to include the prior knowledge of the sys- 
tem variables into the estimation process.^' The preference 
function proposed for radiotherapy optimization here serves 
as a priori probability density function in standard Bayesian 
statistics. The role of the preference function is to indicate 
our "bias" on the values of the system variables. By utilizing 
the partial information of the system variables, one can more 
effectively search the solution space and eliminate some un- 
necessary uncertainties in the optimization process. 

In conclusion, we have developed a statistical analysis- 
based inverse planning algorithm to include preference and 
expert knowledge into the dose optimization process. Instead 
of a rigid dose prescription, the new approach allows us to 
prescribe a range of doses with predesigned preference lev- 
els. The technique represents a novel application of the gen- 
eral Bayesian decision-making theory^' for dealing with sta- 
tistical inference and is valuable for deriving a statistically 
optimal solution in the presence of uncertainties in system 
parameters. The method was demonstrated for a system with 
modulating prescriptions but can be easily extended to solve 
many other related problems (e.g., in biologically based dose 
optimization, one can incorporate the uncertainties of various 
radiobiology parameters into the inverse planning process 
using the frameset developed in this work''). The ill condi- 
tioning of the problem was improved because of the use of a 
less restrictive prescription and, as a result, new solutions 
that are otherwise inaccessible can be obtained naturally. It is 
demonstrated that the obtained solutions using the new ap- 
proach strongly correlate with the preference function, sug- 
gesting that the planning process is controllable and predict- 
able by the proposed method. 
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ABSTRACT 

Radiobiological treatment planning depends not only on the accuracy of the models 

describing the dose-response relation of different tumors and normal tissues but also on the 

accuracy of tissue specific radiobiological parameters in these models. Whereas the general 

formalism remains the same, different sets of model parameters lead to different solutions 

and thus critically determine the final plan. Here we describe an inverse planning formalism 

with mclusion of model parameter uncertainties. This is made possible by using a statistical 

analysis-based frameset developed by our group. In this formalism, the uncertainties of 

model parameters, such as the parameter a that describes tissue-specific effect in EUD 

model,  are expressed by probability density function and are included in the dose 

optimization process. We found that the final solution strongly depends on distribution 

functions  of the  model parameters.  Considering that currently  available models  for 

computing biological effects of radiation are simplistic, and the clinical data used to derive 

the models are sparse and of questionable quality, the proposed technique provides us with 

an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With 

the incorporation of the uncertainties, the technique has potential for us to maximally utilize 

the available radiobiology knowledge for better IMRT treatment. 

Key words: inverse planning, dose optimization, biological models, IMRT 



INTRODUCTION 

Most IMRT optimization systems at present use dose and/or dose volume-based 

objective functions ^'^, which guide the IMRT planning by imposing a penalty according 

to the difference between the computed and prescribed doses. A well-known drawback of 

the dose-based inverse planning is that the nonlinear dose response of tumor or normal 

structures is not fully considered. A number of mathematical models have been 

developed over the years to better describe the biological effect of radiation, which 

include tumor control probability (TCP) ^, normal tissue complication probability 

(NTCP) ^ equivalent uniform dose (EUD) ^ and the probability of uncomplicated tumor 

control (P+) '°' ". hi parallel to these modeling efforts, considerable works have also 

been done to use these biological models to construct more meaningful objective 

functions for therapeutic dose optimization '^"'^. 

Generally speaking, radiobiological formalism involves the use of model 

parameters that are of considerable uncertainty ^' '^"^^. For instance, the radiosensitivity a 

of Webb's TCP model varies fi-om 0.157 Gy'' to 0.090 Gy"' when model parameters were 

fit to 103 patients' data '. Biological 'margins' have been used to account for the 

variability in radiation sensitivity. Similar to the use of a safety margin to account for the 

potential uncertainties, in targeting a tumor, this method assigns more conservative 

radiosensitivity values to the tumor or sensitive structures to deal with the potential 

uncertainty of the parameter^^ Kaver et al proposed a stochastic optimization to account 

for clinical uncertainties, including the varying radiosensitivity '^^' ^^ The objective 

function was constructed based on a linear quadratic Poisson model which approximates 

the probability of curing the patient or inflicting injury. Two parameters in the model 



could be calculated if the standard deviation of dose per faction was known. The 

optimization was thus executed corresponding to different standard deviations. 

We have recently presented a general statistical analysis-based inverse planning 

framework ^^' ^^ and applied it to investigate the influence of model parameter 

uncertainties in biologically based dose optimization ^*. The purpose of this paper is to 

provide a detailed description of the.technique and addresses several important issues 

related to the dose optimization in the presence of model parameter uncertainties. In our 

approach, the uncertainty of a model parameter is quantified by a probability density 

function and its influence is then incorporated into inverse planning through the use of a 

statistical inference theorem ^^. The technique is illustrated by using a hypothetical C- 

shaped tumor case, a prostate tumor case and a paraspinal tumor case with an EUD-based 

model. Considering that currently available models for computing biological effects of 

radiation are simplistic, and the data they rely on are sparse and of questionable quality, 

the proposed technique provides us with an effective tool to minimize the effect caused 

by the uncertainties m a statistical sense. The treatment plans so obtained are generally 

less sensitive to the inter-patient variation and other types of uncertainties that may 

otherwise influence the final treatment plan greatly. 

METHODS AND MATERIALS 

Statistical analysis-based inverse planning 



The inverse problem as posed for IMRT consists of the determination of the 

beamlet weight vector w when a desired plan is prescribed. In a vectorial form, the dose 

to the points in the treatment region depends upon the beamlet weights w as 

D,=dw, (1) 

where d represents the dose deposition coefficients matrix, expressing the dose deposited 

to any patient point when irradiated with a unit weight beamlet. The total number of 

physically  realizable  dose  distributions Dc  in IMRT  is  enormous  and  increases 

exponentially with the number of beamlets. Inverse planning is essentially a plan 

selection process from the vast pool of physically realizable solutions. In a recent paper, 

Xing et al ^^ introduced a statistical analysis-based inverse planning technique. In this 

approach the commonly used objective function is reformulated into a probability density 

function whose value gives the figure of merit of a dose distribution. A virtue of the 

approach is that it allows us to obtain solution in the presence of uncertainties of the 

prescription parameters or other model parameters using a statistical inference technique. 

Application of the technique to deal with a system with a set of variable dose 

prescriptions has been described in another work of our group ^^. Here we use the 

formalism for biological modeling based- inverse planning in the presence of model 

parameter uncertainties. To be specific, we use an equivalent uniform dose (EUD)-based 

objective function employed by Wu et al '^' ^^ and discuss the consequences of the 

variation of model parameter a and how to incorporate the fluctuations into inverse 

planning dose optimization to obtain statistically optimal solutions. 



EUD model and EUD-based objective function 

The concept of equivalent uniform dose (EUD) for tumor was originally 

introduced by Niemierko as the biologically equivalent dose that, if given uniformly, 

would lead to the same cell kill in the tumor volume as the actual nonumiform dose 

distribution. Recently, Niemierko et al suggested a phenomenological form ^' '^' ^°: 

EUD=UY.D: 
\i 

(2) 

for both tumor and normal tissues, where A'^ is the number of voxels in the structure, Di is 

the dose delivered to the fth voxel, a is the tumor or normal tissue-specific parameter that 

describes the dose-volume effect. EUD described in Eq. (2) is the general mean of the 

non-uniform dose distribution. According to the mathematic properties of the function ^^ 

for o = 00, the EUD is equal to the maximum dose, and for a = -oo, the EUD is equal to 

the minimum dose. Tumors generally have large negative values of a, whereas serial 

critical structures (e.g. spinal cord and rectum) have large positive values and parallel 

critical structures that exhibit a large dose-volume effect (e.g. liver, parotids, and lungs) 

have small positive values. 

The objective function or figure of merit used to measure the goodness of a dose 

distribution and guide the optimization ^ In the present paper, the system objective 

function is given by '^ 

F = I[fj' (3) 
j 

where the component subcore^ may be either 



\ EUD 

for tumors, or 

JOAR 

IT-  
iEVD\" (4) 

(EUD'^ (5) 
1+    

for normal tissues and organs at risk (OARs). EUDo is the desired dose parameter for the 

target volume and the maximum tolerable uniform dose for normal structures. Parameter 

n is akin to the structure specific importance factor ^^ in the conventional inverse 

planning formalism that parameterizes our tradeoff strategy of different structure. The 

large n indicates high importance. 

Incorporation of the variation distribution of the model parameter into inverse 

planning 

We assume that Ok in the EUD model varies according to a simple Gaussian 

distribution 

^„(«*) = i'>xp{-r[a*-flj'}, (6) 

where ao is the mean value, P'^is a normalization constant and a,, is one of the sampling 

values of a. For a given distribution, the EUD and the corresponding figure of merit of an 

IMRT plan vary with the sampling of a. We thus rewrite Eqs. (4) and (5) as conditional 

probabilities for a sampled Ok. 



PAEUD\a,)= / (7) 

1 + 
V EUD ) 

P,^(EUD\a.)= I (8) 
(EUDX 
yEUDo) 

The objective function for a structure /« in the presence of uncertainty in a is expressed as 

the summation of a series of joint probabilities 

PSEUD) =^Y.PSEUD\ my P^a.)^ (9) 
k 

and the overall objective function P of the system is a product of Pm(EUD) defined in Eq. 

(9). That is 

F = HyP) = -^UP'^(EUD) = -j;^]nY,PJEUD\a.yPJak). (10) 
m m k 

Optimization method 

•As described above, the uncertainties of model parameters, {ok}, are described by 

probability density functions and they are incorporated into the overall objective function 

of the system through the joint probability given by Eq. (9). To obtain the optimal 

solution in the presence of model parameters, all we need to do is to minimize the overall 

objective function given by Eq. (10). 

The calculation process is schematically shown in Fig. 1. For the computational 

purpose, the probability density function for each structure is discreted into seven equally 

spaced points. We use the Fletcher-Reeves conjugate gradient optimization algorithm ^^ 

to optimize the system. But any other iterative or stochastic optimization can be also 

employed to optimize the system. A common step in all optimization algorithms is the 

8 



evaluation of the objective function for a trial beam profiles (or computed dose 

distribution), which is somewhat tedious here because of the appearance of multiple a^'s 

of the involved structures. Briefly, for a given trial beam profiles or dose distribution, the 

evaluation of the objective function consists of four steps: (i) for a structure m, calculate 

the EUD corresponding to each possible OTA; (ii) calculate the conditional probability for 

the target and OAR using Eq. (7) and (8), respectively; (iii) sum over all possible Ok to 

obtain the joint probability, given by Eq. (9); and (iv) sum over all structures to obtain the 

overall objective function value. After the dose optimization, a set of optimal beam 

profiles and the corresponding dose distribution and other plan indices are provided for 

the planner to assess the clinical relevance of the obtained treatment plan. 

Test cases 

The new algorithm was tested using a hypothetical phantom case with a C-shaped 

target and two clinical cases (a prostate case and a paraspinal tumor boost treatment). The 

size of the pencil beam defined at the isocenter was 0.5 cm. The configuration of the C- 

shaped tumor case is shown in Fig. 2A. Nine 6MV equi-spaced beams were used for the 

treatment (0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, and 320° - respecting the lEC 

convention). The values of n and a in the EUD-based objective function are listed in 

Table 1. The parameter a in EUD model characterizes the dose-volume effect but its 

value is generally not known accurately even for clinically well studied organs. The 

influence of the uncertainty in the a value of a target or sensitive structure to the final 

treatment plan was studied and analyzed. 

Similar study was carried out for the two clinical cases. The six 6MV beam angles 

used for the IMRT prostate treatment were 0°, 55°, 135°, 180°, 225° and 305°. Table 2 



lists some relevant parameters used for plamiing the case. For the IMRT paraspinal boost 

treatment, five 6 MV non-equally spaced coplanar beams were placed at the following 

angular positions: 95°, 140°, 175°, 225° and 275°. The target boost dose was prescribed 

to 16 Gy. Relevant parameters are listed in Table 2. The planning goal was to find a dose 

distribution that covered the tumor volume as uniformly as possible, while maximally 

sparing the spinal cord, liver, and kidney. 

RESULTS AND DISCUSSIONS 

The C-shaped tumor case 

We first investigated the behavior of the system when the parameter a of the 

target EUD takes four different distributions, as depicted in the bar charts shown on the 

right of Fig. 3, while keeping the parameter a of the OAR at a constant ao = 6.0. In the 

case shown in Fig. 3 dl, the parameter a takes only a single value, ao = -10, which is a 

simple case studied by Wu et al 'I The optimal plans for the four distributions of 

parameter a differ significantly, as indicated by the target and OAR DVHs shown in Fig. 

3 A and B. The isodose plot corresponding to the a-distribution shown in Fig. 3 d2 is 

plotted in Fig. 2B. 

To estimate the degree of sensitivity of the solutions against a variation in a, we 

computed the target EUD and the objective function,/r, as a function of parameter a for 

the four optimal dose distributions under different types of uncertainty distributions. The 
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results are plotted in Fig. 4. For plan A, the EUD changes from 65 to 71 Gy when a is 

varied jfrom -10 to -70 and to 79 Gy when a is equal to 140. The objective function varies 

from 0.11 to 0.85 in the range of variation in a. For plan D, the EUD is narrowed to a 

range between 70 Gy and 79 Gy. The EUD variations of plans B and C are similarly 

reduced. These results suggest that the EUD becomes much less sensitive to the variation 

in parameter a in the plans obtained with some "built-in" distributions in parameter a 

(i.e., plans corresponding to Figs. 3 d2 to d4). 

The uncertainty of parameter a of the OAR can be similarly included in the dose 

optimization process when its distribution is knovm. In the second study, we fixed the 

target EUD parameter a= -10 and allowed the parameter a of the OAR to take four 

different distributions as plotted in the right of Fig. 5. The target and OAR DVHs for the 

four possible scenarios are shown in A and B. Once again, we found that the final 

solution strongly depends on the distributions of the parameter a. 

The maximum doses of the OAR of the four plans vary from 24 Gy to 30 Gy. 

Note that the doses to the OAR in plans B, C and D are less than that of plan A, where the 

parameter a is restricted to a single value, ao= 6. This is explainable since the parameters 

a in plans d2, d3 and d4 are shifted up to higher values. As a increases, the EUD puts 

more emphasis on the high dose (recall that EUD becomes the maximum dose when a = 

CO). As a consequence of the increased "effective" a value in the distributions shown in 

Figs. 5 d2, d3 and d4, the OAR dose is improved in comparison with the plan obtained 

under the assumption of a fixed a value (Fig. 5 dl). Interestingly, the target DVHs shows 

that four distinct plans have very similar target coverage. It is well known that in dose 

optimization there is generally no net gain: an improvement in the dose to a structure is 
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often accompanied by a dosimetrically adverse effect(s) at other points in the same or 

different structures. The result here suggests that, from a clinical point of view, it is 

possible to have a great gain in one structure with a little sacrifice in another structure. 

How to find the truly optimal tradeoff represents a practical subject that is worth of 

studying in the future. 

As can be expected from the discussion in previous paragraphs, the solution 

obtained with ao= 6 (Fig. 5 dl) is more sensitive to a variation in parameter a. Indeed, as 

seen from Fig. 6, the EUD for this plan varies from 1 Gy to 30 Gy when a is changed 

from -80 to 140. On the other hand, the EUD changes for the rest three situations are 

much less for the same variation in a. The upper bound of the EUD is reduced to 26 Gy 

for plan d4, 24 Gy for plan d2, and 23 Gy for plan d3. The objective functions of four 

plans show a similar trend. 

The prostate tumor case 

Four IMRT plans with different types of pre-assumed uncertainties were 

generated for a prostate tumor case (Fig. 7A). These include: (i) The a-parameters for 

both prostate target and OAR5 are restricted to single values as listed in Table 2. This 

plan serves as a reference whose DVHs are shovm in Figs. 8A-8C as dotted curves; (ii) 

Only the o-parameter of the prostate target takes a range of values, as depicted in the 

right of Fig. 8A; (iii) Only the a-parameter of the rectum takes a range of values, as 

depicted in the right of Fig. 8B; and (iv) The a-parameters of both prostate target and the 

rectum were allowed to take a range of values, as depicted in the right of Fig. 8C. 
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DVHs for the plan using parameters defined in Table 2 are plotted with dotted 

curves and plans with the inclusion of parameter uncertainty are drawn with solid curves 

(Fig. 8). When the parameter a m target EUD takes a Poisson distribution as shown in the 

bar chart of Fig. 8A, prostate dose homogeneity is significantly improved. The minimum 

dose increases from 55 Gy to 67 Gy, and the maxim dose decreases slightly from 82 Gy 

to 80Gy. However the volumes receiving radiation dose for rectum, bladder and normal 

tissue all increase significantly though the maximum dose remains similar. The 

improvement of the target coverage and compromise of OAR sparing is a natural 

outcome of the competitive requirements for targets and OARs imposed on the system. 

The corresponding dose distribution with the target parameter defined in the bar chart A 

is shown in Fig. 7B. 

Next we considered the inclusion of parameter a uncertainty in EUD calculation 

in one of the critical structures-rectum (Fig. 8 B). The irradiated rectum volume for a 

dose below 60 Gy is less than that of a conventional plan with the parameter a fixed at 

24. DVHs for the bladder, normal tissue and prostate do not change significantly 

compared to the plan without inclusion of parameter uncertainty. 

Lastly, we simultaneously replaced target and rectum parameters with the 

distributions shown in Fig. 8 C. Similar to that corresponds the prescription of Fig. 8 A, 

the prostate coverage is "improved. However, the rectum DVH in this case is not worsen 

greatly because parameter a of rectum EUD was allowed to take a spectrum of values. 

For bladder and normal tissue, although their irradiated volumes in the low dose region 

are higher than those of the conventional plan, the volumes receiving high doses are 

reduced. 
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The paraspinal tumor case 

Three IMRT plans were generated for a paraspinal tumor case (Fig. 9A). These 

include: (i) The a-parameters for both prostate target and OARs are restricted to single 

values as listed in Table 3. This plan serves as a reference whose DVHs are shown in 

Figs. 9B-C as dotted curves; (ii) Only the a-parameter of the target takes a range of 

values, as depicted in the right of Fig. 9B; and (iii) Only the a-parameter of the spinal 

cord takes a range of values, as depicted in the right of Fig. 9C. 

When a in target EUD takes a Pdisson distribution as shown in the bar chart of 

Fig. 9B, dose homogeneity is slightly improved. However this is achieved at the expense 

of more irradiation to the cord. The inclusion of parameter a uncertainty in EUD 

calculation in the spinal cord (Fig. 9C) reduced the maximum cord dose by 100 cGy. The 

DVHs of the target, kidney, and liver were not changed significantly compared to the 

plan without inclusion of parameter uncertainty. 

The influence of various uncertainties on the patient treatment has been a subject 

of intense study. Fenwick and Nahum have included the model parameter uncertainty 

with a standard deviation when calculating the NTCP of rectum ^'*- ^^. Similarly, the 

inclusion of uncertainties in the patient setup and dose calculation has also been 

demonstrated " . Deasy et al have used a bootstrap-based method to estimate the 

influence of biological parameter uncertainties on predicting long-term salivary function 

-20 

. The statistical method proposed here provides a general framework to include various 

uncertainties in the dose optimization process. With minor modification, the technique 
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can be extended to derive statistically optimal solutions in the presence of other types of 

uncertainties. 

As can be intuitively imagined, the inclusion of a-distribution will definitely 

change the final dose. Whether it will improve or worsen the final dose distribution will 

generally depend on the specific form of the a-distribution, and also the metric used to 

judge the goodness of a plan. If the original EUD-based objective fiinction is used as the 

sole metric for the judgment, the inclusion of a-distribution may make the plan worse. 

However, clinical decision-making is not made by a single function and a "worse" plan 

judged by the EUD-objective function may turn out to be clinically more favorable. In 

other words, there is a gap between mathematical dose optimization and clinical decision- 

making. The study seems to suggest that, while it is generally true that there is no net 

gain in dose optimization ^^, it is important to develop a method that is capable of 

optimizing not only the objective fiinction but also the next level of decision-making. 

This kind of optimization will allow us to find the solution that may sacrifice a little (i.e., 

clinically insignificant) in one or a few structures but gain a lot in other structures. 

CONCLUSIONS 

We have proposed and implemented a technique for incorporating biological 

model parameter uncertainties into inverse treatment planning. The formalism is quite 

general and does not prerequisite the specific form of uncertainty distributions of the 

involved model parameters. By mcluding model parameter uncertainties, the final 

solution becomes more robust and the treatment outcome will be less likely influenced by 

inter-patient variation of biological characteristics. With the increasing interest in 
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radiation therapy community to use biologically based models for treatment planning, 

this work provides an effective way to better account for the knovm uncertainties in the 

model parameters and allows us to maximally utilize the available radiobiology 

knowledge to facilitate patient care. 
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FIGURE CAPTIONS 

Figure 1. The flow chart of the optimization process with the inclusion of model 

parameter uncertainty. 

Figure 2. (A) The sketch of the hypothetical case with C-shaped target and the beam set- 

up for dose optimization. (B) The dose distribution corresponding to the parameters listed 

in Tab.l and the probabilistic distribution shown in Fig. 3B. 

Figure 3. The target and OAR DVHs of four optimal plans when parameter a is a fixed 

value (bar chart dl) and varies according to three different probabilistic distributions (bar 

chart 62, d3 and d4). 

Figure 4. The EUD of the target and objective function when parameter a is prescribed 

according to Fig. 3. 

Figure 5. The target and OAR DVHs of four optimal plans when parameter a is a fixed 

value (bar chart dl) and varies according to three different probabilistic distributions (bar 

chart d2, d3 and d4). 

Figure 6. The EUD of the OAR and objective fiinction when parameter a is prescribed 

according to Fig. 5. 
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Figure 7. A transverse slice showing tlie anatomical structures delineated for the prostate 

tumor (A) and the corresponding optimized dose distribution with the parameters listed in 

Tab. 2 and the probabilistic distribution shown in Fig. 8B. 

Figure 8. DVHs for a prostate cancer case using the conventional optimization with fixed 

a-value (dotted line) and the newly proposed approach with the inclusion of model 

parameter uncertainty (solid line). (A) Only the a-parameter for the target is assigned 

with a probabilistic distribution; (B) Only the a-parameter for the OAR is assigned with a 

probabilistic distribution; (C) Uncertainties in the o-parameter are introduced for both the 

target and OAR. 

Figure 9. (A) A transverse slice showing the anatomical structures for a paraspinal case; 

(B) DVHs when the a-parameter for the target is assigned with a probabilistic 

distribution; (C) DVHs when the a-parameter for the OAR is assigned with a 

probabilistic distribution. 
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Table 1. The conventional EUD-based optimization parameter for the hypothetical IMRT 
treatment of a C-shaped tumor. 

PTV PTV* OAR NT 
a -10.0 10.0 6.0 6.0 
EUDo(Gy) 72 76 35 35 
n 20 20 6 6 

* Contains parameters for the target treated as virtual normal tissue to limit dose 
inhomogeniety. 

Table 2. The conventional EUD-based optimization parameter for prostate cancer. 

PTV PTV* Bladder Rectum NT 
a -10.0 10.0 6.0 24 6.0 
EUDo(Gy) 72 76 35 35 35 
n 20 20 6 6 6 

* Contains parameters for the target treated as virtual normal tissue to limit dose 
inhomogeniety. 

Table 3. The conventional EUD-based optimization parameter for paraspinal tumor. 

EUDo(Gy) 

PTV 
■10.0 
16 
20 

PTV"* 
10.0 
17 
20 

Spine 
6.0 
12 

Liver 
6.0 
6.4 

Kidney 
6.0 
4.8 
6 

* Contains parameters for the target treated as virtual normal tissue to limit dose 
inhomogeniety. 
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Biological Model Based IMRT Optimization with Inclusion of Parameter Uncertainty 
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Abstract 

Radiobiological treatment planning depends not only on the accuracy of the models describing the dose-response relation of 
different tumors and normal tissues but also on the accuracy of tissue specific radiobiological parameters in these models. Whereas 
the general formalism remains the same, different sets of model parameters lead to different solutions and thus critically determine 
the final plan. Here we describe an inverse planning formalism with inclusion of model parameter uncertainties. This is made 
possible by using a statistical analysis-based fi-ameset developed by our group. In this formalism, the uncertainties of model 
parameters, such as the parameter a that describes tissue-specific effect in EUD model, are expressed by probability density 
function and are included m the dose optimization process. We found that the final solution strongly depends on distribution 
functions of the model parameters. Considering that currently available models for computing biological effects of radiation are 
simplistic, and the clinical data used to derive the models are sparse and of questionable quality, the proposed technique provides us 
with an effective tool to minimize the effect caused by the uncertainties in a statistical sense. With the incorporation of the 
imcertainties, the technique has potential for us to maximally utilize the available radiobiology knowledge for better IMRT 
treatment. 

Keywords 

inverse planning, dose optimization, biological models, IMRT 

Introduction 

Most IMRT optimization systems at present use dose and/or 
dose volume-based objective functions [1,2], which guide the 
IMRT planning by imposing a penalty according to the 
difference between the computed and prescribed doses. A 
well-known drawback of the dose-based inverse plarming is 
that the nonlinear dose response of tumor or normal structures 
is not fully considered. A number of mathematical models 
have been developed over the years to better describe the 
biological effect of radiation, which include tumor control 
probability (TCP) [3], normal tissue complication probability 
(NTCP) [4], equivalent uniform dose (EUD) [5] and the 
probability of uncomplicated tumor control (P+) [6]. In 
parallel to these modeling efforts, considerable works have 
also been done to use these biological models to construct 
more meaningful objective functions for therapeutic dose 
optimization [7]. 
Generally speaking, radiobiological formalism involves the 
use of model parameters that are of considerable uncertainty 
[8]. For instance, the radiosensitivity a of Webb's TCP model 
varies from 0.157 Gy-1 to 0.090 Gy-1 when model 
parameters were fit to 103 patients' data [3]. Biological 
'margins' have been used to account for the variability m 
radiation sensitivity. This method assumes the patient to be 
more sensitive than the mean value for normal tissues and 
more resistant for the tumor [9]. K^ver et al proposed a 
stochastic optimization to accoimt for clinical imcertainties, 
including the varying radiosensitivity [10, 11]. The objective 
function was constructed based on a linear quadratic Poisson 

model which approximates the probability of curing the 
patient or inflicting injury. Two parameters in the model 
could be calculated if the standard deviation of dose per 
faction was known. The optimization was thus executed 
corresponding to different standard deviations. 
We have recently presented a general statistical analysis- 
based inverse planning fi'amework [12, 13] and applied it to 
investigate the influence of model parameter uncertainties in 
biologically based dose optimization [14]. The purpose of 
this paper is to provide a detailed description of the technique 
and addresses several important issues related to the dose 
optimization in the presence of model parameter 
imcertainties. In our approach, the uncertainty of a model 
parameter is quantified by a probability density function and 
its influence is then incorporated into inverse planning 
through the use of a statistical inference theorem [12]. The 
technique is illustrated by using a hypothetical C-shaped 
tumor case and a prostate tumor case with an EUD-based 
model. Considering that currently available models for 
computing biological effects of radiation are simplistic, and 
the data they rely on are sparse and of questionable quality, 
the proposed technique provides us with an effective tool to 
minimize the effect caused by the uncertainties in a statistical 
sense. The treatment plans so obtained are generally less 
sensitive to the inter-patient variation and other types of 
uncertainties that may otherwise influence the final treatment 
plan greatly. 



Material and Methods 

Statistical analysis-based inverse planning 

The inverse problem as posed for IMRT consists of the 
determination of the beamlet weight vector w vi^hen a 
desired plan is prescribed. In a vectorial form, the dose to 
the points in the treatment region depend upon the beamlet 
weights w as 

D,=dw,     (1) 
where d represents the dose deposition coefficients matrix, 
expressing the dose deposited to any patient point when 
irradiated with a unit weight beamlet. The total number of 
physically realizable dose distributions Dc in IMRT is 
enormous and increases exponentially with the number of 
beamlets. Inverse planning is essentially a plan selection 
process from the vast pool of physically realizable 
solutions. In a recent paper, Xing et al [12] introduced a 
statistical analysis-based inverse planning technique. In this 
approach the commonly used objective fimction is 
reformulated into a probability density function whose 
value gives the figure of merit of a dose distribution. A 
virtue of the approach is that it allows us to obtain solution 
in the presence of imcertainties of the prescription 
parameters or other model parameters using a statistical 
inference technique. Application of the technique to deal 
with a system with a set of variable dose prescriptions has 
been described in another work of our group [13]. Here we 
use the formalism for biological modeling based- inverse 
planning in the presence of model parameter uncertainties. 
To be specific, we use an equivalent uniform dose (EUD)- 
based objective fimction employed by Wu et al [7] and 
discuss the consequences of the variation of model 
parameter a and how to incorporate the fluctuations into 
inverse planning dose optimization to obtain statistically 
optimal solutions. 

EUD model and EUD-based objective function 
The concept of equivalent uniform dose (EUD) for tumor 
was originally introduced by Niemierko as the biologically 
equivalent dose that, if given uniformly, would lead to the 
same cell kill in the tumor volume as the actual 
nonumiform dose distribution. Recently, Niemierko et al 
suggested a phenomenological form [5]: 

EUD=\J^Y^D: 
j 

(2) 

for both tumor and normal tissues, where A'^ is the number 
of voxels in the structure, a is the tumor or normal tissue- 
specific parameter that describes the dose-volume effect. 
EUD described in Eq. (2) is the general mean of the non- 
uniform dose distribution. According to the mathematic 
properties of the function [15], for a = oo, the EUD is equal 
to the maximal dose, and for a = -oo, the EUD is equal to 
the minimum dose. Tumors generally have large negative 
values of a, whereas serial critical structures (e.g. spinal 
cord and rectum) have large positive values and parallel 
critical structures that exhibit a large dose-volume effect 
(e.g. liver, parotids, and lungs) have small positive values. 

The objective function or figure of merit used to 
measure the goodness of a dose distribution or the 
corresponding EUD is given by [7] 

F = l[fj,     (3) 
j 

where the component subcore^ may be either 

1 + 
EUD^ 

EUD 

(4) 

for tumors, or 

JOAR ~' r 
1 + 

EUD (5) 

\EUDJ 

for normal tissues and organs at risk (OARs). EUDo is the 
desired dose parameter for the target volume and the 
maximal tolerable uniform dose for normal structures. 
Parameter n is akin to the structure specific importance 
factor [16] in the conventional inverse planning formalism 
that parameterizes our tradeoff strategy of different 
structure. 

Incorporation of the variation distribution of the model 
parameter into inverse plaiming 
We assume that Ok in tiie EUD model varies according to a 
simple Gaussian distribution 

^„(«*) = ^>xp{-r„[ai-^j'},     (6) 

where ao is the mean value, P\ is a normalization constant 
and at is one of the sampling values of a. For a given 
distribution, the EUD and llie corresponding figure of merit 
of an IMRT plan vary with the sampling of a. We thus 
revmte Eqs. (4) and (5) as conditional probabilities for a 
sampled Ok. 

Pj.(EUD\ak)= ^ 

P„^(EUD\a^) = 

y EUD J 
1 

,   fEUD^" 

(7) 

(8) 

^EUDoJ 
The objective fimction for a structure m in the presence of 
uncertainty in a is expressed as the summation of a series of 
joint probabilities 

P (EUD) = Y,P. (EUD i a^yP^ (a,) ^     (9) 
k 

and the overall objective function P of the system is a 
product of PJJEUD) defined in Eq. (9). That is 

m        k 

F=\ri\IP)=-\n];iP„{EUD)=-Y)nYP„{Em\cuyPSck) 
m 

(10) 

Results and Discussion 

The C-shaped tumor case 



" We iilustrate the proposed technique by planning a 
hypothetical IMRT phantom case with a C-shaped target 
next to a circular critical structure. Nine 6MV equi-spaced 
beams were used for the treatment (0°, 40°, 80°, 120°, 160°, 
200°, 240°, 280°, and 320° - respecting the lEC 
convention). 
The parameter a in EUD model characterizes the dose- 
volume effect but its value is generally not known 
accurately even for clinically well studied organs. We first 
mvestigated the behavior of the system when the parameter 
a of the target EUD takes four different distributions, as 
depicted in the bar charts shown on the right of Fig. 1, 
while keeping the parameter a of the OAR at a.constant ao= 
6.0. In the case shown in Fig. lA, the parameter a takes 
only a single value, ao =-10, which is a simple case studied 
by Wu et al [7]. The rest of Fig. 1 shows three 
representative types of distributions of the EUD parameter 
a. For each of these situations we carried out the dose 
optimization calculation using the method outlined in the 
last section. 
The optimal plans for the four distributions of parameter a 
differ significantly, as indicated by the target and OAR 
DVHs shown in Fig. 2. To estimate the degree of sensitivity 
of the solutions against a variation in a, we computed the 
target EUD and the objective function, fr, as a function of 
parameter a for the four optimal dose distributions under 
different types of uncertainty distributions. The results are 
plotted in the left panel of Fig. 1. For plan A, the EUD 
changes from 65 to 71 Gy when a is varied from -10 to -70 
and to 79 Gy when a is equal to 140. The objective function 
varies from 0.11 to 0.85 in the range of variation in a. For 
plan D, the EUD is narrowed to a range between 70 Gy and 
79 Gy. The EUD variations of plans B and C are similarly 
reduced. These results suggest that the EUD becomes much 
less sensitive to the variation in parameter a in the plans 
obtained with some "built-in" distributions in parameter a 
(i.e., plans corresponding to Figs. 1B-3D). 
The uncertainty of parameter a of the OAR can be similarly 
included in the dose optimization process when its 
distribution is known. In the second study, we fixed the 
target EUD parameter a= -10 and allowed the parameter a 
of the OAR to take four different distributions as plotted in 
the right of Fig. 3. Once again, we found that the final 
solution strongly depends on the distributions of the 
parameter a. 
In Fig. 4 we plot the target and OAR DVHs for the four 
possible scenarios shown in Fig. 3. The maximum doses of 
the OAR of the four plans vary from 24 Gy to 30 Gy. Note 
that the doses to the OAR in plans B, C and D are less than 
that of plan A, where the parameter a is restricted to a 
single value, ao= 6. This is explainable since the parameters 
a in plans B, C and D are shifted up to higher values. As a 
increases, the EUD puts more emphasis on the high dose 
(recall that EUD becomes the maximum dose when a = oo). 
As a consequence of the increased "effective" a value in the 
distributions shown in Figs. 3 B, C and D, the OAR dose is 
improved in comparison with the plan obtained under the 
assumption of a fixed a value (Fig. 3A). Interestingly, the 
target DVHs shows that four distinct plans have very 
similar target coverage. It is well known that in dose 
optimization there is generally no net gain: an improvement 

in the dose to a structure is often accompanied by a 
dosimetrically adverse effect(s) at other points in the same 
or different structures. The result here suggests that, from a 
clinical point of view, it is possible to have a great gain in 
one structure with a little sacrifice in another structure. 
How to find the truly optimal tradeoff represents a practical 
subject that is worth of studying in the future. 
As can be expected from the discussion in previous 
paragraphs, the solution obtained with ao= 6 (Fig. 3 a) is 
more sensitive to a variation in parameter a. Indeed, as seen 
from Fig. 3, the EUD for this plan varies from 1 Gy to 30 
Gy when a is changed from -80 to 140. On the other hand, 
the EUD changes for the rest three situations are much less 
for the same variation in a. The upper bound of the EUD is 
reduced to 26 Gy for plan D, 24 Gy for plan B, and 23 Gy 
for plan C. The objective fijnctions of four plans show a 
similar trend. 

Conclusions 

We have proposed and implemented a technique for 
incorporating biological model parameter uncertainties into 
inverse treatment planning. The formalism is quite general 
and does not prerequisite the specific form of uncertainty 
distributions of the involved model parameters. By 
including model parameter uncertainties, the final solution 
becomes more robust and the treatment outcome will be 
less likely influenced by mter-patient variation of biological 
characteristics. With the increasing interest in radiation 
therapy community to use biologically based models for 
treatment planning, this work provides aii effective way to 
better account for the knovm uncertainties in the model 
parameters and allows us to maximally utilize the available 
radiobiology knowledge to facilitate patient care. 
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Abstract 

With the development of functional imaging techniques and intensity modulated radiation 
therapy (IMRT), there is growing interest in image-guided IMRT to produce customized 3D 
dose distributions in accordance with the patient specific biological requirements. MRSI is 
one of the most promising functional imaging modalities and has been appUed to brain, 
breast, and prostate cancer imaging. In practice, however, the MRSI data do not always 
accurately reflect the actual metabolic level over the entire imaging volume due to our limited 
abiUty to shim near air-filled cavities and/or the strong dependence of the surface coil SNR on the 
spatial position. In this work, we provide an algorithm to numerically incorporate the spectral 
uncertainties into MRSI-guided MRT treatment planning. Assuming that the fluctuation of the 
spectral activity or the prescribed dose EUDo(n) at voxel n is specified by a probability 
distribution P„(EUDo), we treat P„(EUDo) as a priori variable distribution and construct an 
objective function based on the statistical inference technique. The algorithm is used to plan a 
phantom case with hypothetical functional distributions and a brain tumor treatment with 
incorporation of MRSI and the corresponding confidence map. The results indicated that the 
proposed technique is capable of producing dehberately non-uniform dose distributions 
consistent with the MRSI and its spatial uncertainty distribution. Considering that currenfly 
available functional image data are not completely reliable and that missing spectral data 
may occur frequently, the proposed technique provides us with an effective tool to minimize 
the effect and generate statistically optimal treatment plans. 



Including Metabolic Uncertainty into Proton MR Spectroscopic Imaging 
(MRSI)-Gmded Inverse Treatment Planning 

Introduction 
MRSI is one of the most important functional imaging modalities and has been applied to brain, breast, and 

prostate cancer imaging. The modality can not only be used to more accurately delineate the tumor target but also 
reveals tumor biology distribution that allows us to identify high/low tumor burden regions. The imaging data are 
thus potentially useful to guide radiation therapy treatment planning to produce deliberately non-uniform dose 
distribution that selectively boosts the high tumor burden regions. In practice, however, the MRSI data do not always 
accurately reflect the actual metaboUc level over the entire imaging volume due to our limited ability to shim near air- 
filled cavities and/or the strong dependence of the surface coil SNR on the spatial position. In this work, we provide an 
algorithm to numerically incorporate the spectral uncertainties (confidence map) into MRSI-guided MRT treatment 
planning. The new formalism is based on the Bayesian statistical inference theorem. For illustration purpose, a EUD 
model is used as the plan ranking function. The method is applied to study a phantom case with a few hypothetical 
functional distributions and a brain tumor case with inhomogeneous tissue abnormal levels indicated by a ratio of 
Choline and NAA from MRSI. 

Methods 
The equivalent uniform dose (EUD) is the biologically equivalent dose that, if given uniformly, would lead 

to the same cell kill in the structure as the actual non-uniform dose distribution. It is defined as: 

EUD=\ij;^D: 

for both tumor and normal tissues, where A'^ is the number of voxels in a structure, a is the tissue-specific parameter 
that describes the dose-volume effect. Assuming EUDQ (n) is the voxel desired dose parameter and it is linearly 
related to tissue metabolic level M(n) (Cho/NAA in brain tumor). We postulate 

EUD^in) = EUD;(n) + kM(n) 

for a tumor, where EUDQ (n) is the desned dose at voxel n, EUD/ (n) is the conventional prescription dose and k is 

an empirical coefficient. Similarly EUDQ (n) for a critical structure is defined Hnearly proportional to a functional 
importance factor. In this way, the uncertainty of measured biological data can be projected into a EUDQ distribution 
function. Given a value of EUDQ, our preference over the occurrence of the EUD can be expressed as a conditional 
probability, 

P^(EUD\EUDJ=- 

P^{EUD\EUD^^) = 
( EUD ^ 

for target and organ at risk, respectively. The uncertainty in EUDo/MCnj can be cast into the objective function or the 
preference function of the system based on Bayesian theorem. The preference can be modeled as the summation of a 
series of joint probabilities: 

F {EUD) = ^ P {EUD I EUD^^ ).P (£t/D,) 
k 

The overall preference function P of AT voxel system is a product of P„(£OT)). 

Results 
The method was applied to an LVERT treatment of malignant glioma. The target metabolic map was 

discretized into three levels (Fig. A) based on the values of choline/NAA ratio. In a conventional plan, the inner 
region with highest abnormality (target 1) was prescribed 64 Gy, the middle region (target 2) 54Gy and the external 
region (target 3) 44 Gy. Because the measurement of choline/NAA has great uncertainty, we replaced the fixed 



value desired dose (EUDQ) with a probability density based dose prescription. For instance, the target 1 was 
prescribed 58,60,62,64,66,68,and 70Gy with probabilities 12%, 13%,16%,18%, 16%, 13% and 12% respectively. A 
dose distribution is shown in Fig. B when three targets are all prescribed with a Gaussian type distribution. 
The objective functions are lower than those of the conventional plan (Fig. C). The corresponding DVH shows this 
type of distribution could result in slight under dose (Fig. D), suggesting a higher dose prescription may be needed 
when measurement uncertainty is of a Gaussian form. Target DVHs highly depend on the distribution of the 
abnormity levels. Assuming target 3 needs to be prescribed with higher probabilities for doses less than 44 Gy, and 
target 1 needs to be prescribed with higher probabilities for doses over 64 Gy, we found the resultant DVHs were 
significantly different than those of a conventional plan (Fig. E). 

Conclusions 
We have used functional MRSI metabolic data to guide the design of IMRT treatment plan. The uncertainty 

represented in functional imaging has been integrated into the dose optimization. Using this algorithm, the effects of 
the MRSI spectral uncertainty can be minimized in a statistical sense and functional data can be used more 
efficiently and accurately. 
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A) Three targets (1, 2 and 3) with different abnormality indicted by MRSI. B) Dose distribution with inclusion of 
Gaussian type uncertainty. Target 1, 58 to 70Gy, target 2, 48 to 60Gy and target 3, 38 to 50Gy, all with 2 Gy intervals. 
The probability distributions are 12%, 13%, 16%, 18%, 16%, 13% and 12% for seven discretized dose levels. C) Target 
objective functions for dose prescription stated in B. D) Target DVHs corresponding to dose prescription stated in B. E) 
Target DVHs corresponding to probability distributions: target 1,1%, 2%, 3%, 39%, 21%, 18%, and 16%; target 2, 
12%, 13%, 16%, 18%, 16%, 13% and 12%; target 3, 16%, 18%, 21%, 39%, 3%, 2%, and 1%. Discretized dose levels 
are the same as in B. 


